Equação de Dirac: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
(Adição da parte de discretização do método de Crank Nicholson)
(Adição da parte de discretização do método de Crank Nicholson)
Linha 239: Linha 239:
</center>
</center>


=Método de Crank-Nicholson(=
=Método de Crank-Nicholson=


O método de Crank-Nicholson(CN) consiste em uma média entre um método explícito e outro implícito no espaço. Utilizará-se a notação <math>\mathbf{\Phi^{n+1/2} _j}</math> para representar justamente a média entre ambos os métodos, ou seja:
O método de Crank-Nicholson(CN) consiste em uma média entre um método explícito e outro implícito no espaço. Utilizará-se a notação <math>\mathbf{\Phi^{n+1/2} _j}</math> para representar justamente a média entre ambos os métodos, ou seja:
Linha 265: Linha 265:
</center>
</center>


Onde <math>\delta_t, \delta_x </math> são as discretizações explícitas das derivadas.
Para que seja possível aplicar e estudar o método é necessário passar da notação matricial para escalar:


<center>
<math>
i \delta_t \mathbf{\Phi^n _j} = -i\sigma_1\delta_x(\frac{\mathbf{\Phi^{n+1} _j} + \mathbf{\Phi^n _j}}{2})  + \sigma_3(\frac{\mathbf{\Phi^{n+1} _j} + \mathbf{\Phi^n _j}}{2})  + I_2 (\frac{V^{n+1} _j \mathbf{\Phi^{n+1} _j} + V^n _j\mathbf{\Phi^n _j}}{2})
</math>
</center>
<center>
<math>
i \frac{\mathbf{\Phi^{n+1} _j} - \mathbf{\Phi^n _j}}{\Delta t} = -\frac{i}{2}\sigma_1[\frac{\mathbf{\Phi^{n+1} _{j+1}} - \mathbf{\Phi^{n+1} _{j-1}}}{2h} + \frac{\mathbf{\Phi^n _{j+1}} - \mathbf{\Phi^n _{j-1}}}{2h} ]  + \sigma_3(\frac{\mathbf{\Phi^{n+1} _j} + \mathbf{\Phi^n _j}}{2})  + I_2 (\frac{V^{n+1} _j \mathbf{\Phi^{n+1} _j} + V^n _j\mathbf{\Phi^n _j}}{2})
</math>
</center>
Isolando cada tempo em um lado da igualdade:
<center>
<math>
[I_2 + \frac{i}{2}\Delta t\sigma_3  + \frac{i}{2}\Delta t V^{n+1} _j I_2]\mathbf{\Phi^{n+1} _j} + \frac{\Delta t}{4h}\sigma_1[\mathbf{\Phi^{n+1} _{j+1}} - \mathbf{\Phi^{n+1} _{j-1}}] = </math>
<math>
[I_2 - \frac{i}{2}\Delta t\sigma_3  - \frac{i}{2}\Delta t V^{n} _j I_2]\mathbf{\Phi^{n} _j} - \frac{\Delta t}{4h}\sigma_1[\mathbf{\Phi^{n} _{j+1}} - \mathbf{\Phi^{n} _{j-1}}]
</math>
</center>
Abrindo as matrizes <math>\sigma_1, \sigma_3</math> e <math>I_2</math> , e operando-as sobre o vetor <math>\mathbf{\Phi}</math> na equação tem-se:
<center>
<math>
[\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
+\frac{i\Delta t}{2}
  \begin{bmatrix}
1 & 0 \\
0 & -1 \\
  \end{bmatrix}
  + \frac{i}{2}\Delta t V^{n+1} _j
  \begin{bmatrix}
  1 & 0 \\
  0 & 1 \\
  \end{bmatrix}]
  \begin{bmatrix}
  \psi^{n+1} _{1,j} \\
  \psi^{n+1} _{4,j} \\
  \end{bmatrix}
  +\frac{\Delta t}{4h}
  \begin{bmatrix}
  0 & 1 \\
  1 & 0 \\
  \end{bmatrix}
  \begin{bmatrix}
  \psi^{n+1} _{1,j+1} - \psi^{n+1} _{1,j-1} \\
  \psi^{n+1} _{4,j+1} - \psi^{n+1} _{4,j-1} \\
  \end{bmatrix}  = </math>
<math>
[\begin{bmatrix}
  1 & 0 \\
  0 & 1 \\
  \end{bmatrix}
  -\frac{i\Delta t}{2}
  \begin{bmatrix}
  1 & 0 \\
  0 & -1 \\
  \end{bmatrix}
  -\frac{i}{2}\Delta t V^{n} _j
  \begin{bmatrix}
  1 & 0 \\
  0 & 1 \\
  \end{bmatrix}]
  \begin{bmatrix}
  \psi^{n} _{1,j} \\
  \psi^{n} _{4,j} \\
  \end{bmatrix}
  -\frac{\Delta t}{4h}
  \begin{bmatrix}
  0 & 1 \\
  1 & 0 \\
  \end{bmatrix}
  \begin{bmatrix}
  \psi^{n} _{1,j+1} - \psi^{n} _{1,j-1} \\
  \psi^{n} _{4,j+1} - \psi^{n} _{4,j-1} \\
  \end{bmatrix}
</math>
</center>
Pode-se realizar as operações matriciais e escrever duas equações escalares. Para facilitar notação utilizará-se <math>f^n _j = \psi^n _{1,j}$ e $g^n _j = \psi^n _{4,j}</math>:
<center
<math>
\begin{cases}
[1 + \frac{i \Delta t}{2}(V^{n+1} _j + 1)]f^{n+1} _j + \frac{\Delta t}{4h}(g^{n+1}_{j+1} - g^{n+1}_{j-1}) = [1 - \frac{i \Delta t}{2}(V^{n} _j + 1)]f^{n} _j - \frac{\Delta t}{4h}(g^{n}_{j+1} - g^{n}_{j-1} ) \\
[1 + \frac{i \Delta t}{2}(V^{n+1} _j - 1)]g^{n+1} _j + \frac{\Delta t}{4h}(f^{n+1}_{j+1} - f^{n+1}_{j-1} ) = [1 - \frac{i \Delta t}{2}(V^{n} _j - 1)]g^{n} _j - \frac{\Delta t}{4h}(f^{n}_{j+1} - f^{n}_{j-1})
\end{cases}
</math>
</center>
Tem-se então um número <math>n</math> de equações onde <math>n</math> é o número de elementos do espaço discretizado. Portanto o primeiro termo das duas equações gera uma matriz diagonal pois multiplica os termos espaciais dependentes de <math>x_j</math>, já o segundo termo gera uma matriz tridiagonal com diagonal principal nula. Nota-se que os primeiros termos dos dois lados da igualdade são um o conjugado do outro, define-se, portanto, <math>\alpha^n = 1 + \frac{i \Delta t}{2}(V^{n+1} _j + 1)</math> e <math>\beta = 1 + \frac{i \Delta t}{2}(V^{n+1} _j - 1)</math>.
<center>
<math>
\begin{cases}
\alpha^{n+1}f^{n+1} _j + \dfrac{\Delta t}{4h}(g^{n+1}_{j+1} - g^{n+1}_{j-1}) =
\alpha^{n^*}f^{n} _j - \dfrac{\Delta t}{4h}(g^{n}_{j+1} - g^{n}_{j-1} ) \\
\beta^{n+1}g^{n+1} _j + \dfrac{\Delta t}{4h}(f^{n+1}_{j+1} - f^{n+1}_{j-1} ) =
\beta^{n^*}g^{n} _j - \dfrac{\Delta t}{4h}(f^{n}_{j+1} - f^{n}_{j-1}) \\
\end{cases}
</math>
</center>
Considerando que o potencial V é só função da posição, escreve-se o método como:
<center>
<math>
\begin{cases}
Af^{n+1} + Bg^{n+1} = A^*f^n - Bg^n \\
Cg^{n+1} + Bf^{n+1} = C^*g^n - Bf^n \\
\end{cases}
</math>
</center>
Onde:
<center>
<math>
A = \begin{bmatrix}
\alpha & 0 & 0 & \cdots & 0\\
0      & \alpha & 0 & \cdots & 0 \\
0      & 0 & \alpha & \cdots & 0 \\
\vdots      & \vdots & \vdots & \ddots & \vdots \\
0      & \cdots & \cdots & \cdots & \alpha \\
\end{bmatrix};
B = \begin{bmatrix}
0 & \frac{\Delta t}{4h} & 0 & \cdots & 0\\
-\frac{\Delta t}{4h}    & 0 & \frac{\Delta t}{4h} & \cdots & 0 \\
0      & -\frac{\Delta t}{4h} & 0 & \cdots & 0 \\
\vdots      & \vdots & \ddots & \ddots & \vdots \\
0      & \cdots & \cdots & -\frac{\Delta t}{4h} & 0 \\
\end{bmatrix};
C = \begin{bmatrix}
\beta & 0 & 0 & \cdots & 0\\
0      & \beta & 0 & \cdots & 0 \\
0      & 0 & \beta & \cdots & 0 \\
\vdots      & \vdots & \vdots & \ddots & \vdots \\
0      & \cdots & \cdots & \cdots & \beta \\
\end{bmatrix};
</math>
</center>
Por fim, pode-se escrever o método resolvendo o sistema:
<center>
<math>
\begin{cases}
f^{n+1}  = F^{-1}D f^n -F^{-1}E g^n \\
g^{n+1} = J^{-1}G g^n - J^{-1}H f^n \\
\end{cases}
</math>
</center>
Onde  <math>D = (B^{-1}A^* + C^{-1}B)$, $E = (I - C^{-1}C^*)$, $F = (B^{-1}A - C^{-1}B)$, $G = (A^{-1}A^* + I)$, $H = (A^{-1}B + B^{-1}C^*)$ e $J= (A^{-1}B - B^{-1}C)</math>.
Com isso, condições iniciais e de contorno bem estabelecidas, já é possível aplicar o método, dado que todas essas matrizes dependem somente dos parâmetros do sistema.
=Estabilidade Crank-Nicholson=
Utilizará-se o método de Von-Neumann para analisar a estabilidade do método para a equação de Dirac unidimensional, para supõe-se que a função $\mathbf{\Phi^{n} _j}$ pode ser dada pela série de fourier:
<center>
<math>
\mathbf{\Phi^{n} _j} = \sum_{k=0}^{\inf} \mathbf{A}^{n}e^{ikqjh}
</math>
</center>
Devido à indepêndencia linear de cada termo do somatório, ao substituir na equação do método haverá uma equação para cada ente do somatório. Se o módulo da razão $\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}} \le 1$ então é pode-se dizer que o método estável, já que dessa forma garante-se uma não divergência.
Aplica-se um termo geral da série de índice $k$ no método CN para a equação de dirac 1D.
<center>
<math>
[I_2 + \frac{i}{2}\Delta t\sigma_3  + \frac{i}{2}\Delta t V^{n+1} _j I_2]\mathbf{A}^{n+1}e^{ikqjh} + \frac{\Delta t}{4h}\sigma_1\mathbf{A}^{n+1}[e^{ikq(j+1)h} - e^{ikq(j-1)h}] =</math>
<math>
[I_2 - \frac{i}{2}\Delta t\sigma_3  - \frac{i}{2}\Delta t V^{n} _jI_2]\mathbf{A}^{n}e^{ikqjh} - \frac{\Delta t}{4h}\sigma_1\mathbf{A}^{n}[e^{ikq(j+1)h} - e^{ikq(j-1)h}]
</math>
</center>
Divide-se tudo por <math>e^{ikqjh}</math> e isola-se <math>\mathbf{A}</math>:
<center>
<math>
[I_2 + \frac{i}{2}\Delta t\sigma_3  + \frac{i}{2}\Delta t V^{n+1} _j I_2 + \frac{\Delta t}{4h}\sigma_1(e^{ikqh} - e^{-ikqh}) ]\mathbf{A}^{n+1}=</math>
<math>
[I_2 - \frac{i}{2}\Delta t\sigma_3  - \frac{i}{2}\Delta t V^{n} _jI_2 - \frac{\Delta t}{4h}\sigma_1(e^{ikqh} - e^{-ikqh})]\mathbf{A}^{n}
</math>
<math>
[I_2 + \frac{i}{2}\Delta t\sigma_3  + \frac{i}{2}\Delta t V^{n+1} _j I_2 + \frac{\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2i}) ]\mathbf{A}^{n+1}=
</math>
<math>
[I_2 - \frac{i}{2}\Delta t\sigma_3  - \frac{i}{2}\Delta t V^{n} _jI_2 - \frac{\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2i})]\mathbf{A}^{n}
</math>
<math>
[I_2 + \frac{i}{2}\Delta t\sigma_3  + \frac{i}{2}\Delta t V^{n+1} _j I_2 - \frac{i\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2}) ]\mathbf{A}^{n+1}=
</math>
<math>
[I_2 - \frac{i}{2}\Delta t\sigma_3  - \frac{i}{2}\Delta t V^{n} _jI_2 + \frac{i\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2})]\mathbf{A}^{n}
</math>
</center>
Nota-se que os termos que multiplicam o fator <math>\mathbf{A}</math> são o conjugado um do outro, define-se <math>z = I_2 + \frac{i}{2}\Delta t\sigma_3  + \frac{i}{2}\Delta t V^{n+1} _j I_2 - \frac{i\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2})</math>, dessa maneira:
<center>
<math>
\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}} = \frac{z^*}{z}
</math>
<math>
|\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}}| = |\frac{z^*}{z}| = \frac{|z^*|}{|z|} = 1
</math>
</center>
Onde <math>z</math> é sempre diferente de zero, dado que a parte real é dada por uma matriz identidade constante.
Mostra-se, portanto, que a razão entre os coeficientes da série de fourier nunca divergem, ou seja, o método é incondicionalmente estável.





Edição das 20h22min de 3 de maio de 2024

Grupo: André Luis Della Valentina, Lucas dos Santos Assmann, Vinícius Bayne Müller

Introdução

A equação de Dirac descreve uma partícula relativística de spin Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} , como o elétron, com estrutura análoga a da equação de Schrödinger. Ela surgiu inicialmente como tentativa de explicar discrepâncias entre experimentos e teoria para o espectro do átomo de hidrogênio, possibilitando correções para o cálculo da energia do elétron em diferentes níveis (as chamadas correções de estrutura fina). Além disso, por meio dela foi possível prever a existência de antimatéria: descrevendo o elétron, ela também descreve o pósitron.

A fim de compatibilizar a Mecânica Quântica com a Relatividade Especial, a equação diferencial parcial é de primeira ordem tanto no tempo quanto no espaço (diferentemente da equação de Schrödinger, que é de segunda ordem no espaço). A equação de Dirac pode ser escrita de diversas formas; aqui, apresentamo-la explicitamente como um sistema de EDPs acopladas, mais conveniente para os propósitos do trabalho.

Assim como a equação de Schrödinger, a construção da equação de Dirac vem a partir do operador Hamiltoniano, que descreve a evolução temporal do estado quântico em questão:

onde, como anteriormente, os autovalores de correspondem aos valores possíveis de energia que o sistema pode assumir.

A mudança com relação à Mecânica Quântica não relativística acontece quando consideramos a energia relativística da partícula:

Assim, o Hamiltoniano é modificado para representar a medida da energia relativística total.

Diferentemente da equação de Schrödinger, aqui não representa apenas uma função de onda, mas sim um conjunto de quatro delas. Usando a notação

,

as componentes de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi} representam as funções de onda associadas ao elétron e ao pósitron: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_1} (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2} ) representa a função de onda do elétron com spin up (down), e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_3} (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_4} ) representa a função de onda do pósitron com spin up (down). O objeto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi(\boldsymbol{x},t)} é chamado de spinor.

Dedução da equação de Dirac em duas dimensões

Consideraremos neste trabalho a equação de Dirac em duas dimensões, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} . A escolha dessas coordenadas se dá pela conveniência do acoplamento das EDPs: nesse caso, as quatro equações acopladas passam a ser acopladas duas a duas, facilitando o estudo do sistema.

Construção do Hamiltoniano completo

Consideremos uma partícula sob ação de um potencial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\boldsymbol{x};t)} (onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{x} = (x, y, z)^{T}} ), que afeta a energia potencial da partícula, e de um potencial "escalar" Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{sc}(\boldsymbol{x};t)} , que afeta a massa de repouso da mesma. Seguindo uma das propostas possíveis para o Hamiltoniano, temos

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = c \boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta(mc^2 + V_{sc}) + VI_4 }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\alpha} = \alpha_x \hat{i} + \alpha_y \hat{j} + \alpha_z \hat{k}} ; Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_i} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} são matrizes 4x4 adimensionais e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{p}} é o vetor momento linear da partícula.

Pode-se mostrar que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\alpha}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} devem satisfazer certos vínculos, limitando as escolhas possíveis para essas matrizes. A escolha mais simples e usualmente adotada consiste em tomar

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_x = \begin{pmatrix} 0 & \sigma_x \\ \sigma_x & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_y = \begin{pmatrix} 0 & \sigma_y \\ \sigma_y & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_z = \begin{pmatrix} 0 & \sigma_z \\ \sigma_z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} }

Sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{p} = -i\hbar\nabla} , podemos escrever o produto escalar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\alpha} \cdot \boldsymbol{p}} como

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\alpha} \cdot \boldsymbol{p} = -i\hbar\left(\alpha_x \frac{\partial}{\partial x} + \alpha_y \frac{\partial}{\partial y} + \alpha_z \frac{\partial}{\partial z}\right)}

Portanto, em notação matricial o Hamiltoniano Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} pode ser escrito como

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = -i \hbar c \begin{pmatrix} 0 & 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial x} - i\frac{\partial}{\partial y} \\ 0 & 0 & \frac{\partial}{\partial x} + i\frac{\partial}{\partial y} & -\frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial x} - i\frac{\partial}{\partial y} & 0 & 0 \\ \frac{\partial}{\partial x} + i\frac{\partial}{\partial y} & -\frac{\partial}{\partial z} & 0 & 0 \\ \end{pmatrix} + \begin{pmatrix} V + mc^2 + V_{sc} & 0 & 0 & 0 \\ 0 & V + mc^2 + V_{sc} & 0 & 0 \\ 0 & 0 & V - mc^2 - V_{sc} & 0 \\ 0 & 0 & 0 & V - mc^2 - V_{sc} \\ \end{pmatrix} } Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \begin{pmatrix} V + mc^2 + V_{sc} & 0 & -i\hbar c\frac{\partial}{\partial z} & -i\hbar c\frac{\partial}{\partial x} - \hbar c\frac{\partial}{\partial y} \\ 0 & V + mc^2 + V_{sc} & -i\hbar c\frac{\partial}{\partial x} + \hbar c\frac{\partial}{\partial y} & i\hbar c\frac{\partial}{\partial z} \\ -i\hbar c\frac{\partial}{\partial z} & -i\hbar c\frac{\partial}{\partial x} - \hbar c\frac{\partial}{\partial y} & V - mc^2 - V_{sc} & 0 \\ -i\hbar c\frac{\partial}{\partial x} + \hbar c\frac{\partial}{\partial y} & i\hbar c\frac{\partial}{\partial z} & 0 & V - mc^2 - V_{sc} \\ \end{pmatrix} }

Unidades naturais e redução para duas dimensões

A fim de simplificar o formalismo, adotamos as chamadas "unidades naturais", onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar = c = m = 1 } . Note que isso equivale a reescalar as quantidades físicas do problema por um fator adequado. Ao fazer Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=1} , também assumimos que a partícula está no limite relativístico.

Além disso, queremos estudar o problema em duas dimensões. Observamos que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi(x,y,z) = \Psi(x,y)} ; logo, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \Psi}{\partial z} = 0} . Portanto, temos o Hamiltoniano simplificado

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \begin{pmatrix} V + 1+ V_{sc} & 0 & 0 & -i\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \\ 0 & V + 1 + V_{sc} & -i\frac{\partial}{\partial x} + \frac{\partial}{\partial y} & 0 \\ 0 & -i\frac{\partial}{\partial x} - \frac{\partial}{\partial y} & V - 1 - V_{sc} & 0 \\ -i\frac{\partial}{\partial x} + \frac{\partial}{\partial y} & 0 & 0 & V - 1 - V_{sc} \\ \end{pmatrix} }

Forma explícita final

Retornando ao problema original, queremos resolver

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar \frac{\partial}{\partial t} \Psi = H\Psi \to \left[iI_4\frac{\partial}{\partial t} - H\right]\Psi = 0 }

Novamente utilizando a notação matricial, obtemos

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} i \frac{\partial}{\partial t} - V - V_{sc} - 1 & 0 & 0 & i \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \\ 0 & i \frac{\partial}{\partial t} - V - V_{sc} - 1 & i \frac{\partial}{\partial x} - \frac{\partial}{\partial y} & 0 \\ 0 & i \frac{\partial}{\partial x} + \frac{\partial}{\partial y} & i \frac{\partial}{\partial t} - V + V_{sc} + 1 & 0 \\ i \frac{\partial}{\partial x} - \frac{\partial}{\partial y} & 0 & 0 & i \frac{\partial}{\partial t} - V + V_{sc} + 1 \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \end{pmatrix} = 0 }

Realizando a multiplicação matricial, pode-se ver que se obtém dois sistemas acoplados: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_1} com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_4} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2} com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_3} . Escolhendo o sistema de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_1} com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_4} :


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} \left(i \dfrac{\partial}{\partial t} - V - V_{sc} - 1\right) \Phi_1 + \left(i \dfrac{\partial}{\partial x} + \dfrac{\partial}{\partial y}\right) \Phi_4 = 0 \\ \left(i \dfrac{\partial}{\partial x} - \dfrac{\partial}{\partial y}\right) \Phi_1 + \left(i \dfrac{\partial}{\partial t} - V + V_{sc} + 1\right) \Phi_4 = 0 \end{cases} }

Simplificando e isolando a derivada temporal, obtemos por fim

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} \dfrac{\partial \Phi_1}{\partial t} = -i(V + V_{sc} + 1) \Phi_1 -\dfrac{\partial \Phi_4}{\partial x} + i\dfrac{\partial \Phi_4}{\partial y} \\ \dfrac{\partial \Phi_4}{\partial t} = -i(V - V_{sc} - 1) \Phi_4 -\dfrac{\partial \Phi_1}{\partial x} - i\dfrac{\partial \Phi_1}{\partial y} \end{cases} }

Discretização

A equação de Dirac 1D pode ser escrita, na forma matricial, como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \partial_t \mathbf{\Phi} = [-i\sigma_1\partial_x + \sigma_3] \mathbf{\Phi} + [V(t,x)I_2] \mathbf{\Phi} }

Onde e é matriz identidade de dimensão 2.\\ Para discretizar uma equação diferencial parcial como essa, é necessário discretizar o espaço e o tempo. Convenciona-se como um passo finito de tempo e como um passo finito no espaço, de tal forma que , onde são números inteiros. Define-se a notação e também . Discretiza-se as derivadas parciais explicitamente com uma expansão em série de taylor da própria função:

Considerando uma derivada discretizada e truncando na primeira ordem:

O processo é completamente análogo para a derivada espacial, porém para facilitar a aplicação do método mantém-se o espaço centrado em , em outras palavras faz-se uma expansão em torno de , obtendo:

Com isso, obtém-se uma equação para um método explícito no tempo da equação de Dirac 1D.

Pode-se também desenvolver um método implícito no tempo fazendo a expansão de em torno de , obtendo:

Ao aplicar esta aproximação na equação discretizada basta dar um passo a frente em todos os elementos, obtendo um método implícito no tempo, já que há dependência com .

Método de Crank-Nicholson

O método de Crank-Nicholson(CN) consiste em uma média entre um método explícito e outro implícito no espaço. Utilizará-se a notação para representar justamente a média entre ambos os métodos, ou seja:

Define-se a notação:

Dessa maneira, enuncia-se o método CN para a equação de Dirac 1D como:

Onde são as discretizações explícitas das derivadas. Para que seja possível aplicar e estudar o método é necessário passar da notação matricial para escalar:

Isolando cada tempo em um lado da igualdade:

Abrindo as matrizes e , e operando-as sobre o vetor na equação tem-se:

Pode-se realizar as operações matriciais e escrever duas equações escalares. Para facilitar notação utilizará-se :

<center Falhou ao verificar gramática (Erro de conversão. Servidor ("https://wikimedia.org/api/rest_") reportou: "Cannot get mml. TeX parse error: Bracket argument to \\ must be a dimension"): {\displaystyle {\begin{cases}[1+{\frac {i\Delta t}{2}}(V_{j}^{n+1}+1)]f_{j}^{n+1}+{\frac {\Delta t}{4h}}(g_{j+1}^{n+1}-g_{j-1}^{n+1})=[1-{\frac {i\Delta t}{2}}(V_{j}^{n}+1)]f_{j}^{n}-{\frac {\Delta t}{4h}}(g_{j+1}^{n}-g_{j-1}^{n})\\[1+{\frac {i\Delta t}{2}}(V_{j}^{n+1}-1)]g_{j}^{n+1}+{\frac {\Delta t}{4h}}(f_{j+1}^{n+1}-f_{j-1}^{n+1})=[1-{\frac {i\Delta t}{2}}(V_{j}^{n}-1)]g_{j}^{n}-{\frac {\Delta t}{4h}}(f_{j+1}^{n}-f_{j-1}^{n})\end{cases}}}

Tem-se então um número de equações onde é o número de elementos do espaço discretizado. Portanto o primeiro termo das duas equações gera uma matriz diagonal pois multiplica os termos espaciais dependentes de , já o segundo termo gera uma matriz tridiagonal com diagonal principal nula. Nota-se que os primeiros termos dos dois lados da igualdade são um o conjugado do outro, define-se, portanto, e .

Considerando que o potencial V é só função da posição, escreve-se o método como:

Onde:


Por fim, pode-se escrever o método resolvendo o sistema:

Onde .

Com isso, condições iniciais e de contorno bem estabelecidas, já é possível aplicar o método, dado que todas essas matrizes dependem somente dos parâmetros do sistema.

Estabilidade Crank-Nicholson

Utilizará-se o método de Von-Neumann para analisar a estabilidade do método para a equação de Dirac unidimensional, para supõe-se que a função $\mathbf{\Phi^{n} _j}$ pode ser dada pela série de fourier:

Devido à indepêndencia linear de cada termo do somatório, ao substituir na equação do método haverá uma equação para cada ente do somatório. Se o módulo da razão $\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}} \le 1$ então é pode-se dizer que o método estável, já que dessa forma garante-se uma não divergência.

Aplica-se um termo geral da série de índice $k$ no método CN para a equação de dirac 1D.

Divide-se tudo por e isola-se :

Nota-se que os termos que multiplicam o fator são o conjugado um do outro, define-se , dessa maneira:

Onde é sempre diferente de zero, dado que a parte real é dada por uma matriz identidade constante. Mostra-se, portanto, que a razão entre os coeficientes da série de fourier nunca divergem, ou seja, o método é incondicionalmente estável.


Referências

  1. The quantum theory of the electron. Proceedings of the Royal Society of London A, v. 117, n. 778, p. 610–624, fev. 1928.
  2. SAKURAI, J. J. Mecânica quântica moderna. 2. ed. Porto Alegre: Bookman, 2012.
  3. BAO, W. et al. Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime. Journal of Scientific Computing, v. 71, n. 3, p. 1094–1134, jun. 2017.
  4. SOFF, G. et al. Solution of the Dirac Equation for Scalar Potentials and its Implications in Atomic Physics. Zeitschrift für Naturforschung A, v. 28, n. 9, p. 1389–1396, 1 set. 1973.
  5. THALLER, B. The Dirac equation. Berlin: Springer, 2010.