|
|
Linha 169: |
Linha 169: |
|
| |
|
| =Discretização= | | =Discretização= |
| | |
| | A equação de Dirac 1D pode ser escrita, na forma matricial, como: |
| | |
| | <center> |
| | <math> |
| | i \partial_t \mathbf{\Phi} = [-i\sigma_1\partial_x + \sigma_3] \mathbf{\Phi} + [V(t,x)I_2] \mathbf{\Phi} |
| | </math> |
| | </center> |
| | |
| | Onde <math>\mathbf{\Phi} = (\phi_1, \phi_4)^T</math> e <math>I_2</math> é matriz identidade de dimensão 2.\\ |
| | Para discretizar uma equação diferencial parcial como essa, é necessário discretizar o espaço e o tempo. Convenciona-se <math>\Delta t</math> como um passo finito de tempo e <math>h</math> como um passo finito no espaço, de tal forma que <math>x_j = x_0 + jh, t_n = t_0 + n\Delta t</math>, onde <math>j,n</math> são números inteiros. Define-se a notação <math>\mathbf{\Phi}(t_n, x_j) = \mathbf{\Phi}_j ^n</math> e também <math>V(t_n,x_n) = V^n _j</math>. Discretiza-se as derivadas parciais explicitamente com uma expansão em série de taylor da própria função: |
| | |
| | <center> |
| | <math> |
| | \mathbf{\Phi^{n+1} _j} = \mathbf{\Phi^n _j} + \partial_t \mathbf{\Phi^n _j} \Delta t + \mathcal{O}(\Delta t ^2) |
| | </math> |
| | </center> |
| | |
| | Considerando uma derivada discretizada <math>\delta_t \approx \partial_t</math> e truncando na primeira ordem: |
| | |
| | <center> |
| | <math> |
| | \delta_t\mathbf{\Phi^n _j} = \frac{\mathbf{\Phi^{n+1} _j} - \mathbf{\Phi^n _j}}{\Delta t} |
| | </math> |
| | </center> |
| | |
| | O processo é completamente análogo para a derivada espacial, porém para facilitar a aplicação do método mantém-se o espaço centrado em <math>x_j</math>, em outras palavras faz-se uma expansão em torno de <math>x_{j-1}</math>, obtendo: |
| | |
| | <center> |
| | <math> |
| | \delta_x\mathbf{\Phi^n _j} = \frac{\mathbf{\Phi^n _{j+1}} - \mathbf{\Phi^n _{j-1}}}{2h} |
| | </math> |
| | </center> |
| | |
| | Com isso, obtém-se uma equação para um método explícito no tempo da equação de Dirac 1D. |
| | |
| | <center> |
| | <math> |
| | i \delta_t \mathbf{\Phi^n _j} = [-i\sigma_1\delta_x + \sigma_3] \mathbf{\Phi^n _j} + [V^n _jI_2] \mathbf{\Phi^n _j} |
| | </math> |
| | </center> |
| | |
| | <center> |
| | <math> |
| | i \frac{\mathbf{\Phi^{n+1} _j} - \mathbf{\Phi^n _j}}{\Delta t} = [-i\sigma_1\delta_x + \sigma_3] \mathbf{\Phi^n _j} + [V^n _jI_2] \mathbf{\Phi^n _j} |
| | </math> |
| | </center> |
| | |
| | <center> |
| | <math> |
| | i \mathbf{\Phi^{n+1} _j} = \mathbf{\Phi^n _j} + \Delta t[-i\sigma_1\delta_x + \sigma_3] \mathbf{\Phi^n _j} + \Delta t[V^n _jI_2] \mathbf{\Phi^n _j} |
| | </math> |
| | </center> |
| | |
| | Pode-se também desenvolver um método implícito no tempo fazendo a expansão de <math>\mathbf{\Phi^{n-1} _j}</math> em torno de <math>t_n</math>, obtendo: |
| | |
| | <center> |
| | <math> |
| | \delta_t\mathbf{\Phi^n _j} = \frac{\mathbf{\Phi^{n} _j} - \mathbf{\Phi^{n-1} _j}}{\Delta t} |
| | </math> |
| | </center> |
| | |
| | Ao aplicar esta aproximação na equação discretizada basta dar um passo a frente em todos os elementos, obtendo um método implícito no tempo, já que há dependência com <math>t_{n+1}</math>. |
| | |
| | <center> |
| | <math> |
| | i \mathbf{\Phi^{n+1} _j} = \mathbf{\Phi^n _j} + \Delta t[-i\sigma_1\delta_x + \sigma_3] \mathbf{\Phi^{n+1} _j} + \Delta t[V^{n+1} _jI_2] \mathbf{\Phi^{n+1} _j} |
| | </math> |
| | </center> |
| | |
| | =Método de Crank-Nicholson(= |
| | |
| | O método de Crank-Nicholson(CN) consiste em uma média entre um método explícito e outro implícito no espaço. Utilizará-se a notação <math>\mathbf{\Phi^{n+1/2} _j}</math> para representar justamente a média entre ambos os métodos, ou seja: |
| | |
| | <center> |
| | <math> |
| | \mathbf{\Phi^{n+1/2} _j} = \frac{\mathbf{\Phi^{n+1} _j} + \mathbf{\Phi^n _j}}{2} |
| | </math> |
| | </center> |
| | |
| | Define-se a notação: |
| | |
| | <center> |
| | <math> |
| | V^{n+1/2} _j\mathbf{\Phi^{n+1/2} _j} = \frac{ V^{n+1} _j\mathbf{\Phi^{n+1} _j} + V^{n} _j\mathbf{\Phi^n _j}}{2} |
| | </math> |
| | </center> |
| | |
| | Dessa maneira, enuncia-se o método CN para a equação de Dirac 1D como: |
| | |
| | <center> |
| | <math> |
| | i \delta_t \mathbf{\Phi^n _j} = [-i\sigma_1\delta_x + \sigma_3] \mathbf{\Phi^{n+1/2} _j} + [V^{n+1/2} _jI_2] \mathbf{\Phi^{n+1/2} _j} |
| | </math> |
| | </center> |
| | |
| | |
|
| |
|
|
| |
|
Grupo: André Luis Della Valentina, Lucas dos Santos Assmann, Vinícius Bayne Müller
Introdução
A equação de Dirac descreve uma partícula relativística de spin , como o elétron, com estrutura análoga a da equação de Schrödinger. Ela surgiu inicialmente como tentativa de explicar discrepâncias entre experimentos e teoria para o espectro do átomo de hidrogênio, possibilitando correções para o cálculo da energia do elétron em diferentes níveis (as chamadas correções de estrutura fina). Além disso, por meio dela foi possível prever a existência de antimatéria: descrevendo o elétron, ela também descreve o pósitron.
A fim de compatibilizar a Mecânica Quântica com a Relatividade Especial, a equação diferencial parcial é de primeira ordem tanto no tempo quanto no espaço (diferentemente da equação de Schrödinger, que é de segunda ordem no espaço). A equação de Dirac pode ser escrita de diversas formas; aqui, apresentamo-la explicitamente como um sistema de EDPs acopladas, mais conveniente para os propósitos do trabalho.
Assim como a equação de Schrödinger, a construção da equação de Dirac vem a partir do operador Hamiltoniano, que descreve a evolução temporal do estado quântico em questão:
onde, como anteriormente, os autovalores de correspondem aos valores possíveis de energia que o sistema pode assumir.
A mudança com relação à Mecânica Quântica não relativística acontece quando consideramos a energia relativística da partícula:
Assim, o Hamiltoniano é modificado para representar a medida da energia relativística total.
Diferentemente da equação de Schrödinger, aqui não representa apenas uma função de onda, mas sim um conjunto de quatro delas. Usando a notação
,
as componentes de representam as funções de onda associadas ao elétron e ao pósitron: () representa a função de onda do elétron com spin up (down), e () representa a função de onda do pósitron com spin up (down). O objeto é chamado de spinor.
Dedução da equação de Dirac em duas dimensões
Consideraremos neste trabalho a equação de Dirac em duas dimensões, e . A escolha dessas coordenadas se dá pela conveniência do acoplamento das EDPs: nesse caso, as quatro equações acopladas passam a ser acopladas duas a duas, facilitando o estudo do sistema.
Construção do Hamiltoniano completo
Consideremos uma partícula sob ação de um potencial (onde ), que afeta a energia potencial da partícula, e de um potencial "escalar" , que afeta a massa de repouso da mesma. Seguindo uma das propostas possíveis para o Hamiltoniano, temos
onde ; e são matrizes 4x4 adimensionais e é o vetor momento linear da partícula.
Pode-se mostrar que e devem satisfazer certos vínculos, limitando as escolhas possíveis para essas matrizes. A escolha mais simples e usualmente adotada consiste em tomar
Sendo , podemos escrever o produto escalar como
Portanto, em notação matricial o Hamiltoniano pode ser escrito como
Unidades naturais e redução para duas dimensões
A fim de simplificar o formalismo, adotamos as chamadas "unidades naturais", onde . Note que isso equivale a reescalar as quantidades físicas do problema por um fator adequado. Ao fazer , também assumimos que a partícula está no limite relativístico.
Além disso, queremos estudar o problema em duas dimensões. Observamos que ; logo, . Portanto, temos o Hamiltoniano simplificado
Forma explícita final
Retornando ao problema original, queremos resolver
Novamente utilizando a notação matricial, obtemos
Realizando a multiplicação matricial, pode-se ver que se obtém dois sistemas acoplados: com e com . Escolhendo o sistema de com :
Simplificando e isolando a derivada temporal, obtemos por fim
Discretização
A equação de Dirac 1D pode ser escrita, na forma matricial, como:
Onde e é matriz identidade de dimensão 2.\\
Para discretizar uma equação diferencial parcial como essa, é necessário discretizar o espaço e o tempo. Convenciona-se como um passo finito de tempo e como um passo finito no espaço, de tal forma que , onde são números inteiros. Define-se a notação e também . Discretiza-se as derivadas parciais explicitamente com uma expansão em série de taylor da própria função:
Considerando uma derivada discretizada e truncando na primeira ordem:
O processo é completamente análogo para a derivada espacial, porém para facilitar a aplicação do método mantém-se o espaço centrado em , em outras palavras faz-se uma expansão em torno de , obtendo:
Com isso, obtém-se uma equação para um método explícito no tempo da equação de Dirac 1D.
Pode-se também desenvolver um método implícito no tempo fazendo a expansão de em torno de , obtendo:
Ao aplicar esta aproximação na equação discretizada basta dar um passo a frente em todos os elementos, obtendo um método implícito no tempo, já que há dependência com .
Método de Crank-Nicholson(
O método de Crank-Nicholson(CN) consiste em uma média entre um método explícito e outro implícito no espaço. Utilizará-se a notação para representar justamente a média entre ambos os métodos, ou seja:
Define-se a notação:
Dessa maneira, enuncia-se o método CN para a equação de Dirac 1D como:
Referências
- The quantum theory of the electron. Proceedings of the Royal Society of London A, v. 117, n. 778, p. 610–624, fev. 1928.
- SAKURAI, J. J. Mecânica quântica moderna. 2. ed. Porto Alegre: Bookman, 2012.
- BAO, W. et al. Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime. Journal of Scientific Computing, v. 71, n. 3, p. 1094–1134, jun. 2017.
- SOFF, G. et al. Solution of the Dirac Equation for Scalar Potentials and its Implications in Atomic Physics. Zeitschrift für Naturforschung A, v. 28, n. 9, p. 1389–1396, 1 set. 1973.
- THALLER, B. The Dirac equation. Berlin: Springer, 2010.