Equações de Lotka-Volterra Estocásticas

De Física Computacional
Revisão de 10h08min de 27 de agosto de 2024 por Andredv (discussão | contribs) (→‎Stratonovich)
Ir para navegação Ir para pesquisar

Grupo: André Luis Della Valentina, Lucas dos Santos Assmann, Vinícius Bayne Müller

Introdução

O modelo de Lotka-Volterra foi desenvolvido originalmente na década de 1920, de maneira independente por Vito Volterra e Alfred Lotka, e é utilizado para descrever a dinâmica de populações com relações de predatismo. Em sua forma mais simples, as equações de Lotka-Volterra podem ser escritas como

onde e denotam, respectivamente, a densidade populacional de presas e de predadores, e , , e são constantes positivas.

Pode-se interpretar os parâmetros da seguinte maneira:

  • : taxa de crescimento livre da presa;
  • : taxa de predação;
  • : taxa de mortalidade livre do predador;
  • : taxa de crescimento do predador devido à predação. [1]

É interessante notar que o sistema apresenta um ponto fixo não trivial em . Pode-se mostrar também que as demais soluções (além da trivial) são órbitas fechadas no espaço de fase.

Nesse modelo simples, não há competição entre indivíduos de uma mesma espécie e não há limite ecológico para o sustento das populações; ou seja, a população de presas cresce exponencialmente na ausência de predadores. A fim de tornar esse modelo mais realista, pretendemos estudar versões estocásticas do mesmo, que podem ser construídas de diferentes maneiras, e analisar o efeito do ruído sobre o comportamento dinâmico.

Modelo estocástico

Buscamos construir um modelo estocástico de Lotka-Volterra utilizando um processo de Wiener; contudo, a adição de ruído branco nas equações diferenciais pode ser feita de várias maneiras. Consideraremos, aqui, duas delas: ruído adicionado nos parâmetros e ruído externo ao sistema.

Ruído externo

Como primeiro modelo, simplesmente adicionaremos um ruído externo nas equações diferenciais. Esse ruído pode ser interpretado como fatores ambientais independentes das populações, causando tanto benefícios (abundância de alimento, condições climáticas favoráveis para reprodução etc.) como prejuízos (escassez, condições climáticas desfavoráveis etc.). Como as equações tratam de densidades populacionais, devemos utilizar um ruído _multiplicativo_, pois os efeitos dos fatores externos sentidos pelas populações devem ser proporcionais ao tamanho dela. Assim, escrevemos o modelo como

onde os são os ruídos brancos de cada variável, e , a intensidade dos mesmos.

Ao escrever o diferencial total, obtemos

Itô

Transformando as equações acima para equações diferenciais estocásticas no sentido de Itô, obtemos

Observa-se que, além de um incremento de Wiener proporcional a e , obtém-se parâmetros determinísticos "efetivos" e .


Ruído nos parâmetros

Uma outra maneira de explorar o ruído nas equações de Lotka-Volterra é substituir os parâmetros determinísticos do modelo por parâmetros estocásticos. Analisaremos esse modelo proposto no sentido de Itô e no sentido de Stratonovich.

Itô

Para este caso, colocaremos o ruído de tal maneira que e , onde e são constantes e é o ruído branco definido pelo processo de Wiener. Esse novo modelo descreveria um sistema com populações em níveis vizinhos da cadeia alimentar, abrangendo uma biodiversidade representada por parâmetros efetivos estocásticos nas taxas e , proporcional ao número de presas e predadores. Ou seja, há uma diversidade de taxas de reprodutibilidade das presas e mortalidades dos predadores, o que representaria diferentes populações de diferentes espécies.

A nova equação diferencial é dada, então, por:


Seja , , e . Integra-se essa equação em ambos os lados de tal forma que:

A parte determinista é integrada trivialmente, porém para integrar o segundo termo das equações é necessário aproximar no intervalo , e o mesmo para . Expande-se em série de Taylor, conforme o cálculo de Itô, e então obtém-se as equações diferenciais estocásticas ao tomar o limite :

Ao integrá-las de a obtém-se o método numérico utilizado para fazer as simulações computacionais. Nota-se que a integral dos segundos termos são aproximadas para no intervalo . Então, é utilizado o método de Heun para integrar a parte determinística da equação, obtendo portanto o seguinte método:

onde

O índice representa o passo na iteração do método.

Stratonovich

O ruído também pode ser adicionado nos parâmetros e , de forma que e , onde o ruído segue a forma de Stratonovich. Essa mudança pode ser interpretada como a predação de diferentes predadores sobre uma mesma presa, considerando que não há competição entre as diferentes espécies. Esse ruído também pode ser pensado como uma variação do efeito da caça de um mesmo predador, ocasionado, por exemplo, a um certo número de presas escaparem à caça.

Dessa forma, a dinâmica populacional se comporta como:


onde é um ruído branco e . Considerando que denota a integral de Stratonovich e um escalar oriundo de processos de Wiener independentes, utiliza-se para aplicação no método numérico a seguinte equação diferencial estocástica:

Utilizando o método de Heun tem-se:

onde

Código

A estrutura do código foi a mesma para os três casos considerados, mudando apenas os detalhes da equação diferencial utilizada. A integração numérica da parte determinística foi feita pelo Método de Heun. Todas as análises foram realizadas a partir de um número N de realizações independentes, de onde se calcula a média e a variância para cada passo de tempo destas realizações. Assim, pode-se analisar as tendências do sistema de maneira estatística.

Resultados

Nesta seção, serão abordados diversos aspectos sobre o comportamento numérico dos sistemas simulados. Avalia-se qualitativamente a estabilidade e o comportamento do sistema conforme a variação dos parâmetros , das condições iniciais e também da intensidade do ruído.

Ruído externo

O modelo com ruído externo foi tratado apenas no sentido de Itô. As simulações foram feitas com o intuito de observar o efeito das condições iniciais, dos parâmetros e da intensidade do ruído.

Condições iniciais

Parâmetros

Intensidade do ruído

Ruído nos parâmetros

Itô

Primeiramente realizou-se simulações variando o número de presas iniciais para um número fixo de predadores, representando-o em um mapa de fase da média de 50 realizações:

Mapacondiniciais.png


Nota-se um comportamento característico de atratores, onde o ponto fixo das equações de Lotka-Volterra determinística é o mesmo (ponto vermelho). Evidencia-se que esse ponto fixo não depende das condições iniciais.

O comportamento atrativo fica claro ao analisar a média e a variância em função do tempo:

Serie1.png

As amplitudes para os predadores e as presas diminuem conforme o tempo, porém nota-se que o ruído passa a se tornar mais evidente quando as amplitudes das órbitas são menores.

Com a finalidade de testar a coerência do sistema com o determinístico, integrou-se as equações para um ruído da ordem de .

Serie4.png

Mostrando, portanto, que o sistema estocástico se reduz ao determinístico no limite em que o ruído é muito pequeno, dado que observa-se órbitas fechadas. Espera-se que a variância seja nula em um sistema determinístico, porém numericamente obteve-se oscilações que são da ordem do ruído ou menor, corroborando para a convergência do sistema estocástico para o determinístico para pequenos ruídos.

Ao realizar as simulações notou-se que o sistema é bastante sensível ao ruído, convergindo para valores bem estritos para os parâmetros, ruído e condição inicial. Mostrando, portanto, que embora esse sistema modele uma interação entre dois níveis da cadeia alimentar, ele possui alguns graves problemas, como a fácil divergência, devido, provavelmente, aos termos cúbicos das equações. Porém também houve resultados interessantes como os atratores, que podem representar uma espécie de equilíbrio ecológico, onde não há extinções com o passar do tempo. Um dos problemas mais sérios com relação ao modelo é que mesmo na ausência de presas a população de predadores pode crescer indefinidamente, o que não condiz com a realidade.

As simulações realizadas variando os parâmetros trouxeram pequenas modificações no comportamento do sistema, como a alteração do período, a quantidade de órbitas bem definidas e suas amplitudes.


Serie a1.png

Serie a2.png

Serie a3.png

Nota-se que os períodos vão diminuindo conforme aumenta enquanto as amplitudes tendem a diminuir. Os ruídos se tornaram mais presentes com grandes variâncias nas simulações com pequenos. Outra tendência observada foi de que o regime ruídoso parece ocorrer mais tarde para valores de maiores. O que provavelmente está associado com o fato de o ruído se tornar mais presente para pequenas oscilações temporais do número de presas, o que ocorre na região próxima do ponto fixo.


Stratonovich

Com o objetivo de comparar a influência de diferentes ruídos com mesmos parâmetros, foi realizado o gráfico com condições iniciais iguais ao exemplo de Itô.

Strato mapa vci.png

Percebe-se que as órbitas se distribuem de forma menos espaçada radialmente em relação a simulação de Itô e possui trajetórias menos ruidosas. Em seguida, fez-se o gráfico do comportamento da média e variância das densidades populacionais. Pode-se observar que os valores médios convergem para os valores do ponto fixo e continuam variando em trono dele numa forma de batimento. A amplitude das variações da variância não se estabilizou.

Strato series p1.png

No próximo teste, variou-se o valor do ruído procurando um valo máximo para a simulação não divergir. Encontrou-se o valor , porém os sistema pode não convergir pra valores de tempo máximo muito grandes. Observou-se que isso independe da condição inicial.

Strato series ruido.png

Por fim, a variação dos parâmetros , , e pode comprometer a convergência da simulação, como por exemplo para taxa de crescimento do predador muito alta. Simulou-se as equações como parâmetros distintos para evidenciar o comportamento bastante convergente do método em condições iniciais extremas:

Strato series convergencia.png

Notas

  1. Nos gráficos e no código que seguem, é identificado como , mas aqui optou-se por usar para não confundir com um diferencial.


Referências

  1. BRAUER, F.; CASTILLO-CHAVEZ, C. Mathematical Models in Population Biology and Epidemiology. New York, NY: Springer New York, 2012. v. 40
  2. COELHO, P. J. de O. Equações de Lotka–Volterra Estocásticas: Simulações com o Matlab. 25 de junho de 2015. Disponível em https://www.academia.edu/52185574/Sistema_de_competi%C3%A7%C3%A3o_Lotka_Volterra_sob_ru%C3%ADdo_branco. Acesso em ago. 2024.
  3. SCHERER, C. Métodos computacionais da física. 2. ed ed. São Paulo: Liv. da Física, 2010.
  4. KHASMINSKII, R. Z.; KLEBANER, F. C. Long term behavior of solutions of the Lotka-Volterra system under small random perturbations. The Annals of Applied Probability, v. 11, n. 3, 1 ago. 2001.
  5. KOERS, L. Geometric integration of stochastic Lotka-Volterra equations. BSc Thesis Applied Mathematics, 8 ago. 2024.