Método de Runge-Kutta 2ª e 4ª ordem: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
(Criou página com '= Runge-Kutta 2ª ordem = No método explícito de euler tínhamos: <math display="block">\begin{align} y_{n+1} & =y_{n}+f\left(t_{n},y_{n}\right)\Delta t\end{align}</math>...')
 
Sem resumo de edição
Linha 32: Linha 32:
<math display="block">y\left(t+\Delta t\right)=y\left(t\right)+y'\left(t\right)\Delta t+\left(\frac{\partial f}{\partial t}+f\left(t,y\right)\frac{\partial f}{\partial y}\right)\frac{\Delta t^{2}}{2}+\mathcal{O}\left(\Delta^{3}\right)\qquad\left(2\right)</math>
<math display="block">y\left(t+\Delta t\right)=y\left(t\right)+y'\left(t\right)\Delta t+\left(\frac{\partial f}{\partial t}+f\left(t,y\right)\frac{\partial f}{\partial y}\right)\frac{\Delta t^{2}}{2}+\mathcal{O}\left(\Delta^{3}\right)\qquad\left(2\right)</math>


Vamos expandir <math display="inline">k_{2}</math>. Uma expansão de Taylor de primeira ordem para uma função de 2 variáveis em torno de <math display="inline">\left(a,b\right)</math> é dado por<ref>[https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Multivariable_Calculus/3%3A_Topics_in_Partial_Derivatives/Taylor__Polynomials_of_Functions_of_Two_Variables
Vamos expandir <math display="inline">k_{2}</math>. Uma expansão de Taylor de primeira ordem para uma função de 2 variáveis em torno de <math display="inline">\left(a,b\right)</math> é dado por <ref> [https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Multivariable_Calculus/3%3A_Topics_in_Partial_Derivatives/Taylor__Polynomials_of_Functions_of_Two_Variables Taylor Polynomials of Functions of Two Variables] ( Paul Seeburger, LibreTexts)</ref>:
  Taylor Polynomials of Functions of Two Variables ] ( Paul Seeburger, LibreTexts)</ref>:


<math display="block">f\left(x,y\right)\approx f\left(a,b\right)+f_{x}\left(a,b\right)\left(x-a\right)+f_{y}\left(a,b\right)\left(y-b\right)</math>
<math display="block">f\left(x,y\right)\approx f\left(a,b\right)+f_{x}\left(a,b\right)\left(x-a\right)+f_{y}\left(a,b\right)\left(y-b\right)</math>
Linha 75: Linha 74:
y_{n+1} & =y_{n}+\left(k_{1}+k_{2}\right)\frac{1}{2}\end{align}</math>
y_{n+1} & =y_{n}+\left(k_{1}+k_{2}\right)\frac{1}{2}\end{align}</math>


Uma observação, é que o erro global no algoritmo de Runge-Kutta de segunda ordem é <math> \mathcal{O}\left(\Delta^{2}\right) </math) e o local é <math>\mathcal{O}\left(\Delta^{3}\right) </math>.
Uma observação, é que o erro global no algoritmo de Runge-Kutta de segunda ordem é <math> \mathcal{O}\left(\Delta^{2}\right) </math> e o local é <math>\mathcal{O}\left(\Delta^{3}\right) </math>.


==Exemplo ==
==Exemplo ==

Edição das 17h21min de 15 de março de 2022

Runge-Kutta 2ª ordem

No método explícito de euler tínhamos:

Sendo . Podemos reescrever como:

Onde e . Agor se supormos uma solução:

Com o termo adicional dependendo de uma posição genérica em um tempo genérico , isto é . Usando o fato de que , podemos escrever então que:

Agora lembrando a expansão em série de taylor que também vimos no método explícito e Euler:

Abrindo a segunda derivada, temos:

Substituindo então, e escrevendo apenas , temos a seguinte expansão em série de Taylor:

Vamos expandir . Uma expansão de Taylor de primeira ordem para uma função de 2 variáveis em torno de é dado por [1]:

Onde denota a derivada da função na variável . Para o nosso caso, temos então para uma expansão em torno de :

Expandindo então em torno de temos:

Aqui podemos notar que multiplica a expansão da função, então quando desprezamos os termos de segunda ordem da expansão de , deprezamos os termos de terceira ordem de . Substituindo então o aproximado e na equação 1, temos:

Manipulando:

Comparando a aproximação 3 com a expansão 2 temos a seguinte relação:

Diferentes conjuntos de valore satisfazem este sistema. O método do ponto médio é obtido se ecolhermos: , e :

Então:

O método de Heun é obtido se for escolhido e :

Uma observação, é que o erro global no algoritmo de Runge-Kutta de segunda ordem é e o local é .

Exemplo


Runge-Kutta 4ª ordem

Exemplo


Principais materiais utilizados

  1. Runge-Kutta Methods (Michael Zeltkevic, Instituto de Tecnologia de Massachusetts)
  2. Second Order Runge-Kutta (Erik Cheever, Swarthmore)

Citações